A First Course on Kinetics and Reaction Engineering

Class 2 on Unit 2

Where We've Been

- Part I-Chemical Reactions
- 1. Stoichiometry and Reaction Progress
- 2. Reaction Thermochemistry
- Numerical Solution of Non-Linear Equations (Supplemental Unit S2)
- 3. Reaction Equilibrium
- Part II - Chemical Reaction Kinetics
- Part III - Chemical Reaction Engineering
- Part IV - Non-Ideal Reactions and Reactors

Reaction Thermochemistry

- Heat of reaction at 298 K
- Using heats of formation at 298 K

$$
-\Delta H_{j}^{0}(298 \mathrm{~K})=\sum_{\substack{i=\text { all } \\ \text { species }}} v_{i, j} \Delta H_{f, i}^{0}(298 \mathrm{~K})
$$

- Using heats of combustion at 298 K
- $\Delta H_{j}^{0}(298 \mathrm{~K})=\sum_{\substack{i=\text { all } \\ \text { species }}} v_{i, j}\left(-\Delta H_{c, i}^{0}(298 \mathrm{~K})\right)$
- Heat of reaction at other temperatures
- If there are no phase changes between 298 K and the temperature of interest

$$
-\Delta H_{j}^{0}(T)=\Delta H_{j}^{0}(298 \mathrm{~K})+\sum_{\substack{i=\text { all } \\ \text { species }}}\left(v_{i, j} \int_{298 K}^{T} \hat{C}_{p, i} d T\right)
$$

- Gibbs free energy change for reaction at 298 K
- $\Delta G_{j}^{0}(298 \mathrm{~K})=\sum_{\substack{i=\text { all } \\ \text { species }}} v_{i, j} \Delta G_{f, i}^{0}(298 \mathrm{~K})$
- Adiabatic temperature change
- If there are no phase changes between initial and final temperatures, T_{1} and T_{2}

$$
-\sum_{j=1}^{N_{\text {ind }}} \xi_{j}\left(-\Delta H_{j}\left(T_{1}\right)\right)=\sum_{\substack{i=\text { all } \\ \text { species }}} \int_{T_{1}}^{T_{2}} \hat{C}_{p, i}\left(n_{i}^{0}+v_{i, j} \xi_{j}\right) d T
$$

Questions?

Calculation of Heats of Reaction

- This activity will use the 02_Activity_1_Handout.pdf file; please take it out
- The handout is a solution to a problem
- It presents the calculation of the heat of the water-gas shift reaction at $250^{\circ} \mathrm{C}$
- It contains one or more mistakes
- Identify as many errors as you can in the next ~ 5 minutes

Calculation of Heats of Reaction

- This activity will use the 02_Activity_1_Handout.pdf file; please take it out
- The handout is a solution to a problem
- It presents the calculation of the heat of the water-gas shift reaction at $250^{\circ} \mathrm{C}$
- It contains one or more mistakes
- Identify as many errors as you can in the next ~ 5 minutes
- You can't arbitrarily mix heats of formation and combustion; the calculated heat at 298 K is wrong.
- The heat calculated in the solution is for $\mathrm{C}+\mathrm{CO}+\mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{CO}_{2}+\mathrm{H}_{2}$ (if the correct values of the stoichiometric coefficients are used)
- While the proper sign convention was used, the calculation used the starting moles of reactants and final moles of products where it should have used stoichiometric coefficients.
- The calculation failed to account for the latent heat of vaporization of water upon heating from 298 to 543 K
- There may be a problem with the heat capacities: it seems odd that hydrogen is nearly equal to the carbon oxides
- Actually, the values are bad because the calculation took the first term of a polynomial expression and ignored the temperature dependent terms (you wouldn't be expected to catch this just by looking at the calculation)
- Consider how to correct the solution
- What equations would you use?
- What additional data would you need, beyond what was provided?

Common Ways to Correct the Mistakes

- Calculation of the heat of reaction at 298 K
- Use heats of combustion
- with liquid water as the product
- with hypothetical ideal gas water as the product

$$
+v_{H_{2} O, 1}\left(-\Delta H_{c, H_{2} O_{(l)}}^{0}(298 \mathrm{~K})\right)+v_{H_{2}, 1}\left(-\Delta H_{c, H_{2}}^{0}(298 \mathrm{~K})\right)
$$

- Use heat of formation

$$
\Delta H_{1}^{0}(298 \mathrm{~K})=v_{C O, 1}\left(\Delta H_{f, C O}^{0}(298 \mathrm{~K})\right)+v_{C O_{2}, 1}\left(\Delta H_{f, C O_{2}}^{0}(298 \mathrm{~K})\right)
$$

- with same two standard states
- Calculation of the heat of reaction at 543 K

$$
+v_{H_{2} O, 1}\left(\Delta H_{f, H_{2} O_{(l)}}^{0}(298 \mathrm{~K})\right)+v_{H_{2}, 1}\left(\Delta H_{f, H_{2}}^{0}(298 \mathrm{~K})\right)
$$

$$
\Delta H_{1}^{0}(543 \mathrm{~K})=\Delta H_{1}^{0}(298 \mathrm{~K})+v_{C O, 1} \int_{298 \mathrm{~K}}^{543 \mathrm{~K}} \hat{C}_{p, C O} d T+v_{C O_{2}, 1}^{543 \mathrm{~K}} \int_{298 \mathrm{~K}} \hat{C}_{p, C O_{2}} d T+v_{H_{2}, 1} \int_{298 \mathrm{~K}}^{543 \mathrm{~K}} \hat{C}_{p, H_{2}} d T+
$$

- If liquid water was the standard state

$$
v_{H_{2} O_{1}, 1}\left[\int_{298 \mathrm{~K}}^{37 \mathrm{~K}} \hat{C}_{p, H_{2} O_{(1)}} d T+\Delta H_{v, H_{2} O}^{0}(373 \mathrm{~K})+\int_{373 \mathrm{~K}}^{543 \mathrm{~K}} \hat{C}_{p, H_{2} O_{(v)}} d T\right]
$$

- If ideal gas water was the standard state

$$
v_{H_{2} O, 1} \int_{298 \mathrm{~K}}^{543 \mathrm{~K}} \hat{C}_{p, H_{2} O_{(v)}} d T
$$

- It is essential to identify one standard state for each species and then to use that standard state consistently throughout the problem solution

Solving Algebraic Equations

- Representation of the equations:
- or in vector form: $0=\underline{f}(\underline{z})$
- General approach

$$
\left\{\begin{array}{l}
0=f_{1}\left(z_{1}, z_{2}, \cdots, z_{n}\right) \\
0=f_{2}\left(z_{1}, z_{2}, \cdots, z_{n}\right) \\
\vdots \\
0=f_{n}\left(z_{1}, z_{2}, \cdots, z_{n}\right)
\end{array}\right\}
$$

- Guess the solution, $\underline{z} 0$, use the guess to generate approximate linear equations, solve the approximate linear equations to obtain an improved guess
- Repeat that process until
- A specified number of iterations have occurred
- A specified number of function evaluations have occurred
- The values of the functions less than some specified tolerance
- The values of the unknowns are changing by less than some specified tolerance
- The equations can be linearized by truncating a Taylor series expansion
, $f_{1}\left(z_{1}, z_{2}, \cdots, z_{n}\right) \simeq f_{1}\left(z_{0}\right)+\left.\frac{\partial f_{1}}{\partial z_{1}}\right|_{z_{0}}\left(z_{1}-\left(z_{1}\right)_{0}\right)+\left.\frac{\partial f_{1}}{\partial z_{2}}\right|_{\underline{z}_{0}}\left(z_{2}-\left(z_{2}\right)_{0}\right)+\cdots+\left.\frac{\partial f_{1}}{\partial z_{n}}\right|_{\underline{z}_{0}}\left(z_{n}-\left(z_{n}\right)_{0}\right)$
- The derivatives in the linearized equation can be approximated numerically

$$
-\left.\frac{\partial f_{i}}{\partial z_{j}}\right|_{\underline{z}_{0}} \simeq \frac{f_{i}\left(\left(z_{1}\right)_{0}, \cdots,\left(\left(z_{j}\right)_{0}+\delta z_{j}\right), \cdots,\left(z_{n}\right)_{0}\right)-{ }_{i}\left(\left(z_{1}\right)_{0}, \cdots,\left(z_{j}\right)_{0}, \cdots,\left(z_{n}\right)_{0}\right)}{\delta z_{j}}
$$

Solving Algebraic Equations Using MATLAB

- The built-in MATLAB function fsolve performs the tasks just described
- The user provides
- a guess for the solution, \underline{Z}_{0}
- a function that fsolve can call
- this function takes values of the unknowns, \underline{z}, as its only argument
- it returns the values of the functions, \underline{f}, calculated using the values of \underline{z} passed to it
- A MATLAB template file named SolvNonDif.m is provided for your use
- It requires four modifications
- Enter the values of any constants that appear in the problem being solved
- Enter expressions to evaluate the functions, \underline{f}, given the values of the variables, \underline{z}
- Enter the values to be used as the guess for the solution, \underline{z}_{0}
- Enter code to calculate any additional quantities that are desired using the solution to the equations
- It produces
- A message stating whether a valid solution was obtained
- A solution, \underline{z}, to the equations
- The values of the functions, f, evaluated using the returned solution, \underline{z}
- A listing of the values of any additional quantities you entered code for
- Step-by-step instructions for using it are provided
- Example 1 illustrates its use

Problem Statement

In equations (1) through (4) A, B and C are constants with values of 0.2083 $\mathrm{mol} / \mathrm{min}, 5.472 \mathrm{~min} / \mathrm{mol}$ and $0.4164 \mathrm{~mol} / \mathrm{min}$, respectively. Solve the equations for z_{1}, z_{2}, z_{3} and z_{4}, and then compute the ratio of z_{1} to z_{2}.

$$
\begin{align*}
& f_{1}(\underline{z})=A-B z_{1}^{1.5} z_{2}^{0.5}-z_{1}=0 \tag{1}\\
& f_{2}(\underline{z})=C-B z_{1}^{1.5} z_{2}^{0.5}-z_{2}=0 \tag{2}\\
& f_{3}(\underline{z})=B z_{1}^{1.5} z_{2}^{0.5}-z_{3}=0 \tag{3}\\
& f_{4}(\underline{z})=B z_{1}^{1.5} z_{2}^{0.5}-z_{4}=0 \tag{4}
\end{align*}
$$

- The equations do not contain derivatives or integrals, only algebraic terms
- SolvNonDif.m can be used to solve the equations
- Follow the step-by-step instructions provided with this supplemental unit
- Save a copy of SolvNonDif.m as S2_Example_1.m
- Modify the initial comment
- Change the function declaration statement
- It will require four modifications before it can be used
- A copy of the fully-modified file is included with this supplemental unit

First Modification of SolvNonDif.m

- First required modification: define variables to hold the values of all constants that appear in the problem being solved
- Here there are three: A, B and C
- Results of modification

```
% Modified version of the MATLAB template file SolvNonDif.m used to solve
% Example 1 of Supplemental Unit S2 of "A First Course on Kinetics and
% Reaction Engineering."
%
function z = S2_Example_1
    % Known quantities and constants (in units of mol and min)
    A = 0.2083;
    B = 5.472;
    C = 0.4167;
```


Second Modification of SolvNonDif.m

- Provide code to evaluate the functions, f , within the internal function evalEqns

$$
\begin{aligned}
& f_{1}(\underline{z})=A-B z_{1}^{1.5} z_{2}^{0.5}-z_{1}=0 \\
& f_{2}(\underline{z})=C-B z_{1}^{1.5} z_{2}^{0.5}-z_{2}=0 \\
& f_{3}(\underline{z})=B z_{1}^{1.5} z_{2}^{0.5}-z_{3}=0 \\
& f_{4}(\underline{z})=B z_{1}^{1.5} z_{2}^{0.5}-z_{4}=0
\end{aligned}
$$

- Resulting modification

```
% Function that evaluates the equations
function f = evalEqns(z)
        term1 = z(1)^1.5*z(2)^0.5;
        f =
            A - B*term1 - z(1);
            C - B*term1 - z(2);
            B*term1 - z(3);
            B*term1 - z(4);
        ];
    end % of internal function evalEqns
```


Third and Fourth Modifications of SolvNonDif.m

- Third modification is to provide guesses for the solution
- Fourth (and final modification) is to calculate additional desired or requested quantities using the solution
- Here we are asked for the ratio of z_{1} to z_{2}

```
% guesses for the solution
z_guess = [
    1
    1
    1
    1
];
% Solve the set of algebraic equations
z = fsolve(@evalEqns, z_guess);
display('The solver found the following values for the unknowns:');
z
display('The corresponding values of the functions being solved are as follows:');
f = evalEqns(z)
```

```
% compute the requested ratio
ratio = z(1)/z(2)
```


Where We're Going

- Part I - Chemical Reactions
- 1. Stoichiometry and Reaction Progress
- 2. Reaction Thermochemistry
- 3. Reaction Equilibrium
- Part II - Chemical Reaction Kinetics
- Part III - Chemical Reaction Engineering
- Part IV - Non-Ideal Reactions and Reactors

